quinta-feira, 9 de dezembro de 2010

Ah, se todos os textos e COMENTÁRIOS em nossos blogues fossem assim!

Quinta-feira, 9 de Dezembro de 2010

Iliteracia Matemática exponencial?

Li com alguma atenção o artigo mencionado pelo Carlos Fiolhais no post "Polémica à volta das bactérias com arsénio". Nesse texto, Rosie Redfield, que dirige um laboratório de microbiologia da Universidade de British Columbia, faz uma leitura muito crítica do mediático artigo "A Bacterium That Can Grow by Using Arsenic Instead of Phosphorus", publicado na Science por uma equipa de cientistas da NASA.


A seguinte frase chamou-me a atenção: "Over the course of several months they did seven tenfold dilutions; in the sixth one they saw a gradual turbidity increase suggesting that bacteria were growing at a rate of about 0.1 per day. I think this means that the bacteria were doubling about every 10 days (no, every 7 days - corrected by an anonymous commenter)."


Apesar de ser difícil de acreditar, o raciocínio inicial parece ter sido: se há um aumento de 10% ao dia, ao fim de 10 dias há um aumento de 100%, ou seja, a população duplica ao fim desse período. Intrigado, fiz o cálculo correctamente: a população de bactérias duplica ao fim de 7.27 dias, aproximadamente os tais 7 dias que aparecem entre parênteses.


Fiquei esclarecido ao ler, na caixa de comentários, o recado deixado por Rosie Redfield ao bom anónimo: "Hi @Anonymous, I wrote "I think" because I can never remember how to do the exponential calculation and didn't want to take the time to look it up. I've made the correction and credited you."


É difícil de compreender como se pode apresentar este nível de iliteracia matemática (qualquer aluno do 12º ano deveria saber fazer o cálculo) sem sequer se dar conta da gravidade da ignorância, sobretudo vindo de uma microbióloga responsável por todo um laboratório de investigação e que tenta desmontar um artigo desta importância. Há de facto ainda um longo caminho a percorrer...

6 comments:

Anónimo disse...

Com uma taxa específica de crescimento de 0.1 dia^{-1}, o tempo de duplicação é de 6.93 dias.

Anónimo disse...

Não, não é.
Se tivermos 1 unidade no instante 0, temos 1,1 unidades ao fim de um dia, (1,1)^2 unidades ao fim do segundo dia,...(1,1)^7=1,94 unidades ao fim de 7 dias, pelo que 7 dias não chegam. O resultado deve ser um pouco mais de 7 dias.

João Basto

Anónimo disse...

A concentração de biomassa para o instante t é dada por X=X0*exp(ut)
Onde X0 é a biomassa no instante 0, u a taxa específica de crescimento e t o tempo.

O tempo de duplicação é o tempo para o qual X/X0=2.
Ln(2)/u = tempo de duplicação.

Ln(2)/0.1=6.93

Filipe Oliveira disse...

Caros João e anónimo,

penso que estão na clássica discussão da diferença entre taxa específica de crescimento e taxa de crescimento percentual discreta.
Se usarmos a primeira, temos X'=uX, pelo que a fórmula do anónimo estaria de facto correcta.
Eu, tal como o João, interpretei que havia um aumento de 0,1=10% por dia, porque é o que se consegue medir de um ponto de vista experimental mais facilmente e porque o erro da investigadora foi o de ter feito 10*10%=100%.

Notem que os dois conceitos são diferentes, o anónimo, se usar a sua fórmula, encontra que ao fim do dia o número de bactérias é de X0e^(0,1)=X0.1,105, o que é um aumento ligeiramente acima de 10% e o que explica a ligeira discrepância dos valores obtidos para o tempo de duplicação.

Cumprimentos,
Filipe Oliveira

Anónimo disse...

Caro Professor,
muito obrigado pela explicação. Existe alguma relação matemática entre estas duas leis exponenciais?

Obrigado,
João Basto

Filipe Oliveira disse...

Claro que sim, a fórmula do anónimo é o limite contínuo da sua. A sua é: U(t)=U0(1+u)^t.

Imagine agora que a taxa u é ditribuída n vezes ao longo do dia de forma regular. Obter-se-ia

U(t)=U0(1+u/n)^(nt).

Se fizermos n tender para +infinito, o que equivale a dizer que a população cresce a uma taxa de u de forma contínua - é o que o anónimo chama "taxa específica" - obtemos
U(t)=lim U0(1+u/n)^(nt).
É um limite dito notável(!) :
sabemos que lim(1+u/n)^n=e^u,
pelo que se obtém
U(t)= U0e^(ut),
que é a fórmula do anónimo.
Como vê, não é por acaso que 6.93 é um número próximo de 7.27.

Mas note que o foco do post não é sobre este assunto: é sobre a confusão entre crescimento linear e exponencial...